

Improvement of hydraulic control quality for deep drawing presses through retrofit

09.03.2016

10th International Fluid Power Conference

Outline & Introduction

Introduction • Tasks & Machines • Solution • Results • Conclusion

Outline

- 1. Introduction
- 2. Tasks and Machines
- 3. Solution
- 4. Results
- 5. Conclusion

Source: Drive Automotive Industries of America Inc.

Introduction

- _ retrofit for presses every 10-15 years (electrical)
- some machines have hydraulic closed loop control system (die cushions (DC), ram cushions, hydraulic ram)
 - _ most machine manufactures use "of the rack" control system
 - _ special applications need special engineered solutions
- _ approach by TRsystems is a tailored control solution

Introduction • Tasks & Machines • Solution • Results • Conclusion

Relectronic

Arisa S-4-1600-470-230 LDE

- mechanical transfer press with Link-Drive engine
- 10 separate hydraulic die cushions
- 2 servo valves per cushion
- 3-chamber cylinder for every cushion

Year of manufacture	2005
Ram (force, stroke)	16.000 kN, 600 mm
Stroke speed	8 – 30 1/min.
Cushion (force, stroke)	600 kN, 200 mm

MW ZE2100.45.2.2

- hydraulic tryout press with MultiCurve-technology
- 4 separate ram cylinders

09.03.2016

- accumulator drive for forming stroke
- 8 separate pressure cylinders for die cushion

Year of manufacture	2006
Ram (force, stroke)	21.000 kN, 1500 mm
Speed (pressing, rapid down)	500 mm/s, 350 mm/s
Cushion (force, stroke)	6.000 kN, 350 mm

Tasks and Machines

Introduction • Tasks & Machines • Solution • Results • Conclusion

Task for the retrofit

- electrical retrofit of all 10 cushions
- hydraulic remains untouched
- closed loop control for
 - _ DC pressure and positioning function

Before retrofit

09.03.2016

- heavy pressure overshoots and permanent oscillations
 - no consistent component quality

Task for the retrofit

- _ electrical retrofit of whole machine
- new servo valves for all DC pressure cyl.
- closed loop control for

- DC pressure and positioning function
- ram pressure, velocity and parallelism function

Before retrofit

- no constant DC forces, esp. for higher die speeds
- fluctuations within ram's velocity control

Tasks and Machines

Introduction • Tasks & Machines • Solution • Results • Conclusion

 trajectory should look like trajectory of a mechanical press

DC pressure control

09.03.2016

Solution

Introduction • Tasks & Machines • Solution • Results • Conclusion

Hardware

09.03.2016

- existing control system replaced by Beckhoff IPC
- communication between S7 (840D) and Beckhoff via Profibus DP/DP
- 1 IPC controls all 10 die cushions
- EtherCAT I/O-modules with 16 bit resolution for analogue inputs and outputs

Hardware

- existing Beckhoff control system renewed
- new servo valves for DC pressure function (from 40 Hz to 50 Hz frequency)

- _ EtherCAT I/O-modules
- new motion sensors for ram's parallelism and velocity control

Software

- real-time extension Beckhoff TwinCAT (PLC, visualization and closed loop control)
- control algorithms are written in C++ and executed in ring 0 (kernel mode)
- control algorithms include
 - _ cam gear, trajectory generation, pressure-/position-/velocity-/parallelismcontrol...

DC pressure control

09.03.2016

PI-controller (10% of sum signal) and model based feed forward control (90% of sum signal)

Solution

Introduction • Tasks & Machines • Solution • Results • Conclusion

Ram velocity control

- _ trajectory generation (5th order, jolt-free)
- velocity control consists of PI-controller and model based feed forward control
- feed forward control was optimized via implementing valve's opening profile (servo cartridge Rexroth 2WRCE)

Ram parallelism control

- 4 position signal (every cylinder has its own sensor)
- position differences (tilting) are converted in tilting moments around x- and y-axis
- tilting moments are converted in resulting forces at cylinder center
- target value is 0.0 kN in order to eliminate tilting
- no interference between position-/velocity control and parallelism control

Results

mm

G0 E

time [s]

ram position [mm]

Results

Results

Introduction • Tasks & Machines • Solution • Results • Conclusion

Ram parallelism control

Conclusion

Introduction • Tasks & Machines • Solution• Results• Conclusion

Relectronic

Conclusion

- _ retrofit has led to enormous enhancement of closed loop control quality
- _ quality improvement achieved by changes in hardware
 - _ new servo valves
 - _ fast and real-time control systems
- _ model based control algorithms led to new level of stability
- _ consistent component quality ensured

Outlook

- _ self-optimizing and self-adjusting control algorithms
 - _ reducing commissioning time
 - condition monitoring
 - _ compensation of wear
- _ using of faster IPCs and servo valves

Research project

adaptive control

